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ABSTRACT

Alternating diagonal ordering of node points for a two-dimensional
finite-difference model of ground-water flow can be used to produce a
direct solution algorithm that is computationally more efficient than
iterative methods for moderately sized grids. Comparisons with the
strongly implicit procedure, line-succesive overrelaxation, and the
iterative alternating direction implicit procedure indicate that a direct
method using alternating diagonal ordering can be competitive for as
many as 3,000 equations. A FORTRAN computer code is included that
is compatible with the two-dimensional ground-water flow model developed
by the U.S. Geological Survey. The performance characteristics, computer
storage requirements, and input data requirements for the direct solution

algorithm are also included.



INTRODUCTION

As the availability of large capacity, high speed computers increases,
the utility of direct methods (Gaussian elimination) for solving
the set of linear algebraic equations encountered in ground-water
modeling also increases. Price and Coats (1974) analyzed the use of
direct methods for solving matrix equations encountered in reservoir
simulation problems. They argue that it is well known that the commonly
used method for ordering equations (that is, numbering a finite-difference
grid in the smallest dimension) is certainly not the most efficient one.
They go on to discuss the advantages of various alternative methods for
ordering equations, in particular, a method which they refer to as D4
or alternating diagonal ordering. Results indicate that for large grids,
D4 ordering requires only one-fourth the computing time and one-third the

storage of standard ordering for non-symmetric problems in two-dimensions.



D4 ORDERING

The purpose of D4 ordering is to construct a coefficient matrix such
that during the elimination process, sparsity will be conserved. Sparsity
refers to the relative number of non-zero elements in the matrix. Certain
multiplications and divisions can be avoided if zero elements are encountered
during elimination and thus, if the sparsity is maximized, the work required
to complete the elimination can be minimized. Consider a 5-by-5 grid shown
in figure 1 with the grid points numbered in D4 fashion. The coefficient
matrix [A], resulting from finite-difference approximations for a two-
dimensional ground-water flow model will have non-zero entries denoted

by the X's in figure 2.

Note that the upper half of [A] is already in upper triangular form
(no non~zero elements to the left of the main diagonal). Eliminating
unknowns associated with equations in the upper half from the equations
in the lower half, produces non-zero entries in the lower half of [A]
shown by the circles in figure 2. Note that, 1) calculations are not
required for zero entries during this elimination, and 2) the bandwidth
of non-zero entries cregted in the lower half is such that elimination
through the lower half requires less work than standard ordering. Although
item 2) may not be obvious from figure 2, Price and Coats (1974)
demonstrate that these characteristics can reduce the work (number of
multiplications and divisions) required for elimination to almost
N2/4 for large square grids, where N is the number of equations. Standard
ordering requires N2 multiplications and divisions; thus D4 ordering
may require only one-fourth as much work.
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Figure 1.--D4 (alternating diagonal) ordering for a 5-by-5 grid.



X X X
X X XX
X XX XX
X X XX
X X X
X X X XX
X XX XX
X X X XX
X X X
X XX X
X XX XX
X XX X
X XX
XXX X000O0
XX OoOX 00O
X XX O XO oJe)
XX XX O00OXO 000
XX XX OO0 OXO 000
X XX O OX 0]@)
XX X o0 XO O
XX XX OO0 OXO 0O
XX XX O00 OXOO0O
XX X OO oX O
XX X 000 XO
- XXX OO0 0OX
Figure 2.-- Structure of matrix [A] assuming D4 ordering. The X
characters denote non-zero elements in the original
matrix [A]. The O characters denote non-zero elements

formed by eliminating the X characters from the equations
in the lower half of the matrix.



Also, symmetric matrices require only one-half as much work as
non-symmetric matrices (operations are necessary only to the right of
the main diagonal). Thus, the work required using D4 ordering may
approach N2/8 or IJ3/8 for large square grids, where I and J are the

grid dimensions.

ESTIMATING WORK/RATIOS

For direct solution methods, the bandwidth of the coefficient matrix
is an important characteristic because the storage requirements are
proportional to the bandwidth and work is proportional to the square of
the bandwidth. The work required for elimination of a banded symmetric
matrix, using standard ordering, is approximately NJZ/Z or IJ3/2 where J,
the smallest grid dimension, is assumed to approximate the bandwidth of the
matrix. If the reduction in work produced by D4 ordering can be estimated,
the work ratio between D4 ordering and iterative methods can also be
estimated for various grid sizes.

If J<I, the bandwidth for standard ordering is J+1 and the work for large

I and J is, as mentioned above, approximately IJ3/2. Therefore:

S i
D4 D4 2 1)

where fD4 is the work ratio of D4 compared to standard ordering. Figure

3 shows work ratios of D4 to standard ordering (fDA) achieved using an

IBM 370/155 computer for various grid sizes and grid elongations (ratios of
J to I). The Gauss-Doolittle method of decomposition (Forsythe and Moler,
1967) was used for both D4 and standard ordering. Thus an estimate of work

using D4 ordering can be obtained using figure 3 and equation 1.
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For iterative solution methods, the work for each iteration is
directly proportional to the number of equations and the total work

required for a solution can be written:

W, ¥ CN,IJ (2)
where Ci is the number of multiplications and divisons required per

iteration, N, is the number of iterations required for a solution, and 1J

i
is the product of the grid dimensions which presumably approximates
the number of unknowns for a given problem. The coefficient Ci is
about 31 for SIP (strongly implicit procedure), 47 for IADI (iterative
alternating direction implicit procedure) and 23 for LSPR (line-successive
overrelaxation) as coded in the model for two-dimensional ground-
water flow developed by Trescott and others (1976). Note that the
grid dimensions of the two-dimensional ground-water flow model are not
exactly equal to I and J as discussed herein. To simplify computations,
the model grid includes a border of inactive node points. Thus the
model grid dimensions must be reduced by 2 to obtain the values of I
and J used in this discussion.

The relative work between the D4 method and the iterative methods
can be estimated by combining equations 1 and 2 as:
W ) 0.5fD J2

D4 4

it CiNy

(3)



In developing a computer code that would be compatible with the two-
dimensional ground-water flow model (Trescott and others, 1976),

a small amount of overhead was required to calculate the coefficient
matrix. To make a more accurate practical estimate of work ratios
(wb4/wit)’ this overhead (approximately 20IJ multiplications) is
included even though it becomes insignificant for large grids. The
work ratio between D4 ordering and iterative methods can thus be

approximated by:

2
D4J + 20

- C.N, ()
i'i

WD4 N 0.5f

it

Figure 4 depicts the quantity wDaNi/wit for various grid sizes
(assuming I=J) for the three iterative methods included in the two-
dimensional ground-water flow model. Equation 4 was used to construct the
graph with values of fD4 obtained from figure 3 for a 1l:1 elongation ratio.
The quantity wD4Ni/wit is the number of iterations that yield the same
amount of work required by direct solution with D4 ordering. Thus if
an iterative method requires more than waNi/wit iterations, the problem

can be solved more efficiently using the D4 technique.
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It is also of interest to note that for a problem containing
missing grid blocks (transmissivity equal to zero) or other irregularities
in boundary geometry, the D4 technique may be more effective than equation
4 would predict. The reason is that missing grid blocks or irregular
boundary geometry can result in a smaller bandwidth than that estimated
from the grid dimensions. It is clear from equation 4 that if the
bandwidth is reduced, the work required for the D4 technique may be
significantly reduced because the work is directly proportional to the

square of the bandwidth.

COMPUTER CODE

A FORTRAN computer code was developed to perform direct solution
assuming D4 ordering. The code was constructed to be interchangeable
with the S@LVE2 subroutine (LSPR) in the two-dimensional ground-water
flow model (Trescott and others, 1976) and is listed in the appendix.
Although the definition of some input data variables has changed, the
only modification required to accommodate this subroutine into the program
is to change one card in the main program. This card is also listed in
the appendix. Before describing the changes in input data, a discussion

of non-linear terms and uniform time steps is appropriate.
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Non-linear Terms

For water-table aquifer systems; systems that include ground-
water evapotranspiration; or combined water-table artesian simulations;
the resulting equations are non-linear or are only piecewise linear. The
term piecewise linear is meant to imply that the system is linear over certain
ranges of head but not uniformly linear over the entire range. To
analyze these problems effectively in the environment of a direct-solution
scheme, linearization techniques such as Newton-Raphson iteration (Blair and
Weinaug, 1969), or perturbation (J.V. Tracy, oral comm., 1977) can
be used. Although these methods solve the problem in a mathematically
pleasing fashion, a nonsymmetric coefficient matrix is produced, thus
significantly reducing the utility of a direct-solution scheme. For
most ground-water problems, a simple technique called extrapolation can give

satisfactory results with a minimum of computational effort.

Extrapolation

The purpose of using a technique such as perturbation is to avoid
decomposing the coefficient matrix more than once per time step, as
would be required if the non-linear terms were updated iteratively.
A very simple, yet effective, method for obtaining an estimate of the
non-linear terms is to extrapolate the head using values calculated
from preceding time steps (Von Rosenberg, 1969). Generally,
extrapolation is made to the mid-point of the next time step, thus providing
estimates of the average non-linear coefficients during that step. If the

point of extrapolation is variable, the scheme could be written as

*
h = h_, + 0 ) -h ) (5)

-12-



where h* is the estimated head to be used for calculating non-linear

hk—l and hk—2 are heads at the k-1 and k-2 time levels,

respectively, and 0 is the extrapolation factor. If 6 is set to zero,

terms,

the scheme becomes one of explicit evaluation of non-linear terms at
time level k-1. Although the method is simple in concept, it appears
to be quite effective for many non-linear ground-water flow problems
and yields an estimate of the solution to the non-linear problem in a
single decomposition of the coefficient matrix.

Extrapolation may not eliminate all of the difficulties associated
with non-linear terms, however, and so the computer code was structured

1"

to allow a sequence of "controlle iterations during each time step. This
takes the form of specifying a minimum number of iterations that must be
completed during the step. Non-linear terms are evaluated using the head
computed by the most recent iteration. A maximum number of iterations

is also specified and the sequence is terminated if the maximum head

change for an iteration is smaller than a specified tolerance. Termination
of the sequence must be achieved within the maximum limit of iterations

or the program will abort. However, by selecting an arbitrarily large
closure tolerance, a minimum number of iterations can be guaranteed and

the closure tolerance will be satisfied; thus the program will not

abort. The use of iteration, although somewhat inefficient computationally,

should allow the solution of many problems that cannot be solved using

only extrapolation.
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Uniform Time Steps

For linear problems (artesian simulations with no evapo-
transpiration), a direct-solution technique can be very effective for
simulations with uniform time steps. For these problems, the
coefficient matrix does not change from one time step to the next and
therefore only a single decomposition of the matrix is required. Heads
at subsequent time steps are determined by reformulating the right hand
sides of the difference equations and back substituting. The computational
work required to reformulate and back substitute can be substantially
less than that of decomposition, thus solving for several uniform
time steps can be accomplished much more efficiently than an equivalent
number of non-uniform steps.

The computer code is designed to take advantage of this reduction
in work automatically if the necessary conditions exist. The necessary
conditions are: 1) artesian simulation, 2) no evapotranspiration, 3)
no iteration specified (see variable LENGTH below), and 4) uniform time
steps.

Changes to Input Data

Subsequent paragraphs describe changes in the definitions of some
input data variables used in the two-dimensional ground-water flow model
(Trescott and others, 1976). Complete descriptions of the input data

cards can be found on pages 49-55 of that report.
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In group II, card 2, columns 21-30, the variable ERR is used to
define the error criterion for closure on the iteration sequence for
non-linear problems. If the calculated head change for an iteration
is smaller than this value at all nodes, iteration will stop. Reason-
able values of this parameter are probably about 0.1 or 0.2 and are
related to the amount of error in transmissivity, evapotranspiration
coefficients, or leakage coefficients that is acceptable. A large value
of ERR can be used to guarantee closure after a minimum number of iterations
has been completed.

In group II, card 2, columns 71-80, the variable LENGTH is defined
as the minimum number of iterations desired. Thus if at least 2 iterations
(in addition to the first decomposition) are desired, code 2 for LENGTH.
The maximum number of iterations desired is controlled by the parameter
ITMAX (group I, card 4, columns 31-40). Set ITMAX to the maximum number
of iterations desired. For some problems in which non-linearity is
caused by the constraints on evapotraspiration coefficients or leakage
coefficients in combined water-table artesian simulations, it may be
desirable to iterate one or two times. If these two parameters (LENGTH
and ITMAX) are set equal, and ERR is sufficiently large, LENGTH iterations
will result. The purpose of this type of iteration ig to insure that the
water-level has not exceeded the allowable range for correct coefficient
calculation during the time step. For example, evapotranspiration rate

is limited to a maximum value if the water level is above land surface.

»
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If the water level moves above land surface during a time step, the
rate will be incorrect unless iteration is performed. However, this
not be necessary for most problems and may only be significant

for steady-state calculations. To avoid iteration, set LENGTH to zero.

In group II, card 3, columns 1-10, the variable HMAX is defined
as a dampening factor similar to B' used in the SIP algorithmn. It can
be used to control oscillations for some highly non-linear water-table
problems. (See Trescott and others, 1976, pp. 26-29).

Recall that the computer code was constructed as a replacement for
subroutine SPLVE2 (LS@PR) and thus LSPR must be selected in group I,
card 3, columns 26-30 to designate direct solution. If direct solution
is selected, an additional data card is required prior to the group IV data.
The card inputs the variable THETA used for extrapolation in water-table
simulations. The format is F10.0 (columns 1-10) and a blank card is
required for simulations in which direct solution is selected and THETA is
not used (non-water-table simulations).

Additional arrays (AU, AL, IC, B, and IN) are required for direct solution
and are dimensioned explicitly in the subroutine. (See Appendix).The required
dimensions for AU, AL, IC, B, and IN are computed by the program and
displayed on the program output. These variables and must be dimensioned
at least as large as indicated on the output if the program is to run success-
fully. Array IN should always be dimensioned by at least DIML-2 by DIMW-2
(DIML and DIMW are the model grid dimensions). Initially, the other arrays can
be dimensioned as follows, assuming N = DIML x DIMW, AU and IC should

be N/2 by 5, AL should be N/2 by DIML-1, and B should be N. If these

-16-



estimates differ significantly from the computed values, it may be
appropriate to recompile using the computed dimensions.

Storage Requirements and Computation Time

Although storage requirements and computation time will depend
entirely upon the type of computer system available, experience on an
IBM 370/155 lLwill be presented to provide some insight into expected
values.

The core storage in thousand- byte units (1 byte = 8 bits, 32 bit
words) can be approximated by:

23

C = 87 + 0.034 N'' (6)

where N is the number of active nodes (unknowns). This assumes that all
options have been selected and that the Y array (see Trescott and others,
1976, p. 38) and the additional arrays required for D4 ordering are
dimensioned exactly as required. Thus, for 1000 unknowns, 254K bytes of

core storage are required. That part of this total required by the additional

arrays in D4 is approximately;

. IN + 0.5NB

Cos = 256 )

where B is one less than the smallest grid dimension (DIML-1 or DIMW-1).
On modern computers, core storage is commonly available in quantities

that allow serious consideration of problems involving as many as

1/ The use of brand name in this report is for identification purposes only

and does not imply endorsement by the U.S. Geological Survey.

17



three thousand unknowns. As a practical matter, two-dimensional ground-
water models seldom have more than 3,000 unknowns and therefore the
D4 ordering technique should be an effective solution method.

An empirical relation for CPU (central processor) time in seconds,
excluding data input, is:

t = (4.82 X 1077y nt-9° (8)

This is the time required to complete an iteration, or a non-uniform

time step, if iteration is unnecessary.

Roundoff Error

Roundoff error may cause difficulties for some problems if the
magnitude of the elements of the coefficient matrix are highly variable.
The decomposition of the matrix as written in the computer code in the
appendix is carried out in single precision arithmetic and computers
such as the IBM 370/155 that have a standard word size of 32 bits (6 to 7
decimal digits) can be prone to roundoff error. Computers that have larger
standard word sizes (such as the CDC 7600 with 60 bit words) seldom have
roundoff error problems.

Errors in the mass balance computed by the ground-water model are
indications of roundoff error. If the error is large (greater than about

one percent), it may be necessary to 1) carry out the decomposition in
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double precision arithmetic, 2) iterate on the residual of the difference
equations, 3) use some form of scaling the coefficient matrix, or 4)

use a computer that has a larger standard word size. Iteration on the
residual is accomplished merely by forcing iteration (LENGTH>O).

Scaling the coefficient matrix requires modification of the computer

code and was found to be somewhat ineffective on a test problem that

exhibited roundoff error difficulties.

Utility

It is anticipated that the D4 method will be most useful in the
solution of steady-state problems. For the iterative methods (SIP,

ADI, and LSPR) solutions to steady-state problems generally require many
iterations unless the initial estimates of aquifer head are close to

the solution. This is uncommon, however, and thus the D4 method should
be very effective.

For transient problems, the aquifer head at the old time level is
normally very close to the values at the new (unknown) time level and
iterative methods can be used to obtain a solution in a few iteratioms.
Large time steps however, will probably result in a situation similar
to steady-state problems in that many iterations may be required by
iterative methods and the D4 method may be more effective. Also, as
indicated previously, transient simulations of linear problems using many
time steps of equal size may be accomplished very efficiently using the

D4 method.
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CONCLUSIONS

The size and speed of modern computers have increased utility
of direct- solution techniques as applied to ground-water modeling problems.
The D4 ordering scheme with Gauss-Doolittle decomposition is competitive
with iterative methods, such as SIP, IADI and LS@R, for many problems.
The problem of selecting iteration parameters, restrictions on coefficient
variation, and slowly converging or possibly non-converging sequences of
estimates are virtually eliminated if direct solution is used.

Work ratios between the D4 method and the iterative methods

can be estimated and an evaluation of the utility of the D4 method can
be made. On an IBM 370/155 computer, the two-dimensional ground-water model
can be programmed to solve for 3,000 unknowns in the same amount of CPU
time required for about 13 SIP iterations. Thus, direct solution
assuming D4 ordering can be an effective solution algorithmn for a wide

range of ground-water modeling problems.
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Changes to program code to use D4

1)

2)

Change card MAN1710 in the Main program to:

43), Y(L(20)),Y,(L(22)),Y(L(21)),Y(L(18))

Note that this is a continuation card and thus the first
character (4) is in column 6.

Insert the subroutine listed on the following pages in

place of S@LVE2.
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MNO=MINO (MMyNANQ)
MXO=MAXD (MMgNXD)
cue  EFL 0w

€0 JIF ((I+1) 46T, IM) €O
TF (IN(I+10J)eEGQ,C)
JU=Jyli+
TC(IRWJUISIN(I+] 4)
MM=IN(I+1eJ)=1R
MXQO=MAXO (MMgMXQO)
MANO=MTNO (MveMANG)

C#8  RICHT

¢0 IF ((J*I)QGTO’\-N) (€0
IF (IN(Ted+1)eEG,C)
Jl=JU+1
TC(TRWJULI=ZIN(TeJ+ 1)
MN=TIM(ToJ+l)=IR
MXQ=MAX0 (MMoMXD)
MANO=MINQ (MMyMNG)

70 IC(IRe1)=JU

0 COCNTINLE
IE=MX0C=MNC+2
NEQ=K
ICRI=ICK=1
IE1=1R=]
LF1=sNFQ=ICR]
LF=NEC=ICFK

WRITF (Fe510) HMAXSLFNGTHyITMAXsTHETA
WRITF (Fs520) ICRIsLHLsIBLloICRIoNEQeINMyyM

RETURN
R TR IET TR LELE L L2

ENTRY NEWITB

C #4681 314533 81 35 43 35 38 48 4 48 48 S0 48 34 38
KCUNT=0
ITYPE=0

IF (CDLT .F—QOIOQANE OKT.GT.IOANDOLENGTH.EG.C.AND .EVAPQNE.CHK (ﬁ) )

1PE=1

IF (WATERNE.CHK (Z))
I1TYPE=2

NC G0 I=1y1IM

NC 90 J=leJdM

GC T0 50

TC €0
GC 10 60

TC 70
GC To 70

GC T0 100

D4
D4
D4
D4
N4
D4
N4
D4
D4
YA
D4
Na
D4
D4
D4
D4
D4
D4
D4
D4
D4
D&
D4
D4
N4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4

1TYD4
D4
D4
D4
D4
D4

S7¢
58¢
56 ¢
60C
61C
62C
63(
6470
AEC
6€C
67C
6810
~S0
700
71¢C
720
730
740
750
T€Q
770
780
76¢
A00
81¢
Ago0
830
8440
8E0
REN
R70
880
RSO
900
910
S20
930
940
9%0
S60
970
980
960
1000
loiro
1020
1030
1040
1080
10€0
in70
1080
1060
1100
1110
1120
1130
1140
1150
11€0
1170



NsT+dsDIML+] D4

IF (T(N) oLEaDaeORaS(N)WLT.2.) GO TO 90 D4
NELTAH= (PHI(N)=PHE (N))#CDLT#THETA D4
DEIVMAX=0,1#(PFI(N)=BATTCM(N)) Dé

IF (ABSI{DELTAF) CToNELVMAX) DELTAR=DELTAH#LELMAX/ABS(DELTAR) D4
BET(N)=FHI(N)+DELTAR D4

S0 CCNTIANUF D4
CALL TRANS D4

100 RIGI=0N, D4
a4 |LOALC MATRIX A AND VECTOR B FOR T4 D4
IF (TTYFELEQ.1) GC TO 130 D&

PC 110 I=1.ICK] D4

NC 110 u=1e5 D4

110 AL (TeJ)=0, D4
NRC 1720 I=1.LH1 D4

NC 120 J=leIR1 D4

120 AL (T9J)=04 D4
120 NC 140 1=1NFG D4
140 B{I)Y=0. D4
NC 310 I=lelw D4

NC 310 J=]edM D4

IF (IN(I4J)eFGe0) GG TC 310 D4
Th=In(19J) D4
N=T+14DIML#Y D4

Y ELEN! D4
ANE=N+] D4
NL=N=DINML D4
NR=N+DTVL D4
DXR=NFLX (J+1) D4
DYR=NFLY (I+1) D4
STRTN=STRT (N) D4
KEFPN=KEEF (N) D4
PEEN=PHI (M) D6

IF (ITYFF.EQal) PFEN=PHE (N) D4
..........'.."....O..O..Q.'...l..l'.'.O.‘Qll"'ll.....‘..l.00000004

D4

~aaCOMPUTF COEFFICIENTSwe= D&

1F (FVAPJNELCHFK(E)) 6O TO 160 D4

D4

~=aCOMPLTF EXFLICIT AANP IMPLICIT PARTS CF ET RATEw=a D4
GFNCN=GRND (N) D4
ETarR=0, YA
FTIQC=0,0 D4

JF (PHFNLLEGRNDN=ETDIST) GO T0O 160 D4

IF (PRENL,ETLGRNDN) GO TC 150 N4
FTaR=QET/ETDIST D4
ETQC=F TCR# (ETC IST=GRNUN) D4

GC TO0 1€0 D4

150 ETnNC=R€ET D4
D4

—eaCOAMPUTE STCRAGE TFRMe=w D4

160 IF (CCNVRTWEQ.CHK (7)) GC TO 170 D4
RFO=S(N) /CELT Ds

IF (WATERWLEGQ,CHK (Z)) RPC=SY(N)/DELTY D4

GC YO 240 D4

D4

~eaCONPUTE STCRAGF COEFFICIENT FUR CONVEHSICN PRUBLEM==a D4

170 SLRS=0,0 D4
TCPN=TOP (N) D4

IF (KFEPN.GF  TCPN«ANDJPFENLGE.TOPN)Y GC TOQ 210 N4

IF (KEEFNJLTWTUPNJANDGPHFENSLTLTOPN) GC TO 200 D4

1180
1160
iz200
1210
1220
1230
1240
1250
12¢é0
1270
1280
1260
1300
1310
1320
1330
1340
1350
13¢0
1370
1380
1360
400
1410
lazo
1430
1440
1480
14€0
1470
1480
1450
1500
1510
1520
1530
1540
1850
15¢0
1570
1575
1580
1560
1600
lel0
1620
1630
1640
1650
1660
1870
le680
1660
1700
1710
1720
1730
1740
1750
17€0
1770



1€0

160
200

210
2z0

IF (KEEPN=PHEMN) 16041504190
SLRS=(SY(N)=S(N))/DELT#(KEEPN-TOPN)
GC TN 210
SLRS=(S{N)=SY () ) /DELT® (KEEPN=TOPN)
RFO=SY(N) /DELT

GC 10 220

RFO=S(N) /DELT

TF (LEAK NELCHFK(9)) 6C T 240

~==COMPUTF NET LEAKAGE TFRM FOR CONVERSION SINULATION==-
IF (RATE(N) oFGo0,,0RNM(N)ECL0,) GO TC 240

FEN1=AMAX]1 (STRTN,TQPN)

Uz1.

rFD2=n,

IF (PHFAL,GELTCPN) GC TC 230

HFFN2=TOPN

=0,

SL(NY=RATE (NI /M (AY#(RIVER(N) =HENY) +TLIN)# (HED1=hED2=STRTN)
CCNTIMUE

ARFA=DXB#LYR
F=(RHO+TL (N)#L+ETDCR) #AKREA

Coasnal CAN COFFFICIENTS IATC 84 AND AL

2€0

210

280

2S0

Cl.=(T& (NL))Y#DYR
CR=(TR(N))®#DYF
CA=(TC(NA)Y) #DNXR

CF=(TC (N)Y)#DXE

IF (TTYFF.ER.1) ¢C TG 300

IF (IRGGELICR) GC TC 290

JU=1

TF ((Jd=1)LTe1) GC TH 2%0

IF (IN(Teu=1)eEGQ,C) GO TO 299
NIENIIES |

AL (IRsJL)==CL

TF (IN(I=19J)eEQLC) GC TO 260
JU=zJli+y

AL (1P 4JL) ==CA

IF ((T+1)GTIM) €O TC 270

IF (IN(I+1eJ)efQ.) GC TO 270
Jl=Ju+l

AL (IR¢JL)Y==CR

IF ((J+1)eGTaM) L TC 2RO

IF (IN(I4d+1)YERQR.C) GO 10 280
Jl=yli+l

AL (IR, JLU)==CR

E=E+CA+CB+CL+CR

AL (IR,1)=E

D4
D4
D4
D&
D4
D4
D4
D4
D4
D4
N4
D4
D4
D4
D4
D4
Da
D4
D4
D4
D4
D4
D4
Da
D4
D4
D4
D4
D4
D&
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D&
D4
Da
D4
D4

B(TR) = (RHCHKEEFN+SL(N)+CRE(N)+WELL(N)=ETQU+SUBS*TL(N)®STRTNI #AREA+D4

1CA#PHI (NA) +CREPHT (NR) +CL#PHT (NL) +CR#PHT (Nh)=E#PHI(N)
TEF(T(N)eGTWL0.?) GC TC 310

AL (IRs1)=1,

B{IR)=0.

GC To0 310

IFRR=IR=ICR]

F=E+CA+CR+CL +CR

AL (TRRy1)=E

D4
D&
D4
D4
D4
D4
D4
D&

RITR) = (RHO#KEEPN+SL (N) +GRE (M) +WELL(N) =ETQL+SUBS*TL(N)#STRTNy#AREA+D4

LCA#FHI (NA) +CHHPHT (RR) +CLHPHT (NL) +CR#PFT (NR)=E#PHI (N)

IF(T(N)eGTL0) GC TC 210
AL (IRR,1)=1.

D4
D4
D4

178
179
180
181
lre
182
1R4
18€
1R¢
187
ing
1As
190
191
192
193
194
19%
19¢
197
198
l9g
200
201l
20z
cn3
04
20%
206
207!
208
20S
2101
211!
2131
2141
2154
2161
218
216!
2201
2211
2234
224¢
225(
22€(
227(
228(
226 ¢
230¢(
231¢
£33¢(
234¢
€13s¢
c36¢
237°¢
23870
238
23S¢
2400
Lz



R(TR)=0.
GC 10 310 " "

D4
N4

300 R(IR)=(RHCHKEEPNASL (N)+GRE (N)+WELL (N)=FTOL+SURS+TL(N)#STRTN'#ARFA+D4
1CA#PHT (NA) +CAREHT (NB) +CL#PHT (ML) +CR#PHT (NF) = (E+CH+CL+CA+CR) #PKHI (N) N4

TF(T(MN)eGTeDe) GC TO 310
F{IR)=0e
310 CCNTINUE
IF (TTYFELEQ.,1) 6f T0 3&0
pandeE TMINATE TO FILL AL
NC 340 I=)lICK1
Jou=IC(Is1)
Cl=l./7AL (T 1)
[C 330 u=2sJJ
LE=IC(Tsd)
C=al(T,4)%C]
DC 220 K=deJd
KL=TC(TeK)=LR+]
AL (L oKL)=AL (L oKL )=CHAL (T 4K)
320 CONTINUE
AL(TeJ)=C
330 CONTINUE
340 CONTINUE
WasaaE] TMINATE AL
NC 370 I=14LH
IR=T+ICK1
_=7
Cl=l./7AL(I41)
GC 360 u=ZeIF]
L=l+]
TF (AL (Ted)eFGoa0,) GU TC 360
C=AL(Teu)#C1
KL=0
NC 2350 K=delHl
KL=KL +1

IF (AL (T oK) eNEeD) AL(LoKL)I=AL(LoKL)=C#AL(T oK)

350 CONTINIJE
AL (TyJy=C
360 CCNTINUE
370 CCNTINUE
s#VODTFY RESe UPPEK HALF
360 DC 4n0 I=1.ICK1
Jo=IC(Ie1)
NPC 360 J=2edd
LE=IC(Isd)
RILR)=B(LR)=AL (T4 )#R(I)
360 CCNTTANUE
400 H(I)=RB(1)/AU(I+1)
BaNVODIFY RFSe LUWER KALF
NC 4720 I=14LH
IR=1+1CR1
LR=]IR
DC 410 u=2+1R1
LR=zLR+]
IF (AL (led) oaNFe0W) BLR)=B(LR)=AL(IsJ)#B(IR)
410 CCNTINUE
420 R(IR)=R(IR)/AL (T, 1)
HuuEdRACK SOLVE=-=-LCWER HALF
R(NEQ)=B (NEQ) /AL (NFQ=ICR]14s1)
NC 440 I=)eLH
K=NEQ=T

Da
D4
Na
Da
Da
D4
Da
D4
D4
D4
D4
D4
N4
Ds
Da
D4
D4
N4
04
D4
D4
D4
D4
D4
D4
D4
D&
Da
D4
D&
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D&
D4
D4
D4
D4
Da
D4
D4
D4
D4
Da
D4
D4
Da
D4
D4

2430
2440
2450
24€0
2470
2480
2450
2500
2510
2520
2530
2525
2540
2550
2560
2570
2580
2550
2600
2610
2620
2630
2640
2680
26€0
2670
26R0
2685
2650
2700
2710
2730
2740
2750
2760
2770
2780 .
2750
2800
2810
2820
2R30
2840
2880
2860
2870
2860
2850
2900
2910
2920
2930
2940
2980
2960
2970
2980
2950
3000
3010
30z0



C#

c#

Ca

/7

KL=Kk=ICK1 D4

L=x N - D4

NPC 430 J=241R1 D4
L=L+1 D4

IF (AL (KLoJ)eNEoDe) B(K)=B(K)=AL (KL yJ)#B (L) D4

430 CCNTINUE N4
440 CCNTINUE D4
#ABBRACK SCL VE==FPER HOLF nNg
NC 460 I=149ICF1 . D4
K=ICR=1 N4
Ju=TIC(Ke 1) D4

DC 480 U=Z+Jd D4
L=TC(Ked) D4
Ri{kK)=R(X)=AU(KeJ)HB (L) D4

450 CCNTINHE D4
4€0 CCNTINUE D4
#URBCOMPIITE NFW OFT vALUFS D4
GC 470 T=1,1w D4

NC 470 J=1led¥ D4

IF (IN(Jed)eFEGal) GC TC 470 N4
N=T+1enIML*J D4

IF (TTYFEJNEL1) PrE(N)=KEEP(N) D4
L=IN(T o) D4
TCHK=ARS (R (L)) D4

TF (TCHKLEGTLHIGT)Y PIGT=TCHK N4

PFET (M) =PHI (N) +HMaXx#3 (L) D4

470 CCNTINYE D4
#UBRCEFFCK TERMINATION CORDRITICNS D4
TFSTI(KCUNT+1)=BT¢T D4

IF (LENCTFGTe O ANDJWATERJNELCHK(Z)) €O TC 490 D4

IF (WATERGNELCHK (2)) RETURN D4

TF (KOUNT,GEdLENCTIHOANL RIGTIJLESERR) HETIHN D4
KCUNT=KOUNT +) D4

IF (XOUNTLLELITMAZ) GC T0O 480 D4
WRITFE (F+500) Da
CALL TRANS D&
CALL TERM] D4
RETLRN D4

480 CALL TRANS Do
GC Tn 100 D&

4S50 JF (KCUNTeGE dLENGTHSANDZRIGTLESERR) KFTURN D4
KCUNT=KCUNT+1 D4

IF (KCUNT.LE.ITMAX) GC Tn 100 D4
WRTTF (P+500) D&
CALL TFR™] D4
RETULRN D4

D4

D4

500 FCRMAT (YOEXCEEDFELC FERMITTED NUMRER OF ITERATIONS FOR NCN«LTNEAR SD4
I10LUTIONY /Y 1463 (r1)) D4

510 FCRVNAT (1K=941XetSOQLUTICN BY LDU FACTCRIZATION ASSUMING D4 ARDERIND4
1G%9/042XeS0(1F_) g/ /961X BETA =1'9FS,79//+45Xe ' ITERATIONS: ~INIVUMD4

THaIDy/eSBXy TMAXTINUM =1,15,/960Xe ' THETA =14F5.2) D4

S0 FCRMAT (lhee2SEXgridnoawaRNINGHe#ssuInIMym DIMENS[ONS FOR ARGAYS USD4
1EC BRY TRIS METHCL ARE AS FOLLCWS!'e//e64xXetAUtts IS, BY Cty/ye64D4
CXe AL 3105 et EYV 15¢4/0€64Xe'TCE915," BY S1e/965XstBI 15, N4
3/9R4XeVINSt 4TSy EY1,15) D4
520 FCRMAT (RF1044) D4
FND D4

3020
3040
3nso
3060
3070
3080
3060
3100
3110
3120
3130
3140
3150
3160
3170
dieo
3160
3200
3210
3220
3220
3240
3280
32¢0
37270
3280
3260
3300
3310
33zo
3330
3340
3350
3360
3370
3380
3390
3400
3410
3420
3430
3440
3480
34¢0
3470
3480
3450
3500
3510
3s5z0
3530
3540
35€0
35¢0
3570
3580
3585
3560
3400~



